

Trace Heavy Metal Analysis in Animal Feed by ICP-MS

Wei Li, Ph.D. Office of the Texas State Chemist October 21, 2011

OFFICE OF THE TEXAS STATE CHEMIST

Texas Feed and Fertilizer Control Service
 Agriculture Analytical Service

What's Heavy Metal

- Term used loosely for 60 years under various definitions, none accepted by the International Union of Pure and Applied Chemistry (IUPAC)
- A metal having an atomic weight greater than sodium, a density greater than 5 g/cm³

Some notion of toxicity

Heavy Metal Toxicity

Metal	Sources	Description g Extremely poisonous as well as colorless and odorless, arsenic can enter the body through the mouth, lungs and skin. Arsenic toxicity seems to predominantly affect the skin, lungs and gastrointestinal system, and may cause nervous disorders, deteriorated motor coordination, respiratory diseases, and kidney damage as well as cancers of the skin, liver, bladder and lungs.				
Arsenic (As)	Chemical processing plants, cigarette smoke, drinking water, fungicides, meats and seafood, metal foundries, ore smelting plants, pesticides, polluted air, specialty glass products, weed killers, wood preservatives, etc.					
Cadmium (Cd)	Air pollution, batteries, ceramic glazes/enamels, cigarette smoke (both first and second hand), tap and well water, food (if grown in cadmium-contaminated soil), fungicides, mines, paints, power and smelting plants, seafood, etc.	Exposure to cadmium can occur through inhalation or ingestion in places or situations where cadmium products are used, manufactured, or ingested. Cigarette smoke is the biggest source of cadmium toxicity, which seems to primarily affect the <u>lungs</u> , kidneys, bones, and <u>immune system</u> . It may lead to lung cancer, prostate cancer and heart disease, and also causes yellow teeth and anemia. Cadmium also seems to contribute to autoimmune thyroid disease.				
Chromium (Cr)	Stainless steel welding, chromate or chrome pigment production, chrome plating, leather tanning, handing or breathing sawdust from chromium treated wood	Exposure to high level chromium can damage and irritate your <u>nose, lungs, stomach, and</u> <u>intestines.</u> Ingesting very large amounts of chromium can cause stomach upsets and ulcers, convulsions, kidney and liver damage, and even death.				
(Pb)	Air pollution, ammunition, auto exhaust, batteries, containers for corrosives, contaminated soil, cosmetics, fertilizers, foods (if grown in lead-contaminated soil), hair dyes, insecticides, lead-based paints, lead-glazed pottery, pesticides, solder, tobacco smoke, water (if transported via lead pipes), etc.	Lead is a naturally-occurring neurotoxin. Although many lead-containing products (such as gasoline and house paints) were banned in the 1970s, contamination still occurs today mostly by drinking lead-contaminated water, breathing lead-polluted air, and living in or near older painted buildings and certain toxic industrial areas. Lead toxicity primarily targets the nervous system , kidneys, bones, heart and blood, and poses greatest risk to infants, young children and pregnant women. It can affect fetal development, delay growth, and may also cause attention deficit disorder, learning disabilities, behavioral defects, and other developmental problems.				
Mercury (Hg)	Air pollution, barometers, batteries, cosmetics, dental amalgam fillings, freshwater fish (such as bass and trout), fungicides, insecticides, laxatives, paints, pesticides, saltwater fish (such as tuna and swordfish), shellfish, tap and well water, thermometers, thermostats, vaccines, etc.	Both poisonous and dangerous, mercury is found throughout our environments in many forms and also in many household items. Mercury often permeates the ground we walk on, and is also found in some childhood vaccines today because of its use as a preservative. Mercury as used in <u>dental fillings</u> is the primary source of toxic exposure, and in vapor form accounts for the majority of all exposures (via inhalation). Mercury toxicity can affect the central <u>nervous system</u> , kidneys and <u>liver</u> . Research suggests that this heavy metal may also contribute to autism and multiple sclerosis.				
Thallium (Tl)	Infrared and electric eye optical devices, foods (if grown in thallium-contaminated soil), light-sensitive crystals, photocells, rodent and ant poisons (now discontinued), contaminated cocaine (or what is thought to be cocaine), semiconductors, etc.	Thallium is a toxic heavy metal with no known biological function. Human contamination can occur from oral ingestion as well as through the skins and lungs, especially if exposed to thallium-contaminated dust from lead and zinc smelting plants, pyrite burners, and similar processing sites. Thallium toxicity mainly affects the <u>nervous system</u> , and can lead to maladies such as hair loss, nerve degeneration, extremity numbness, and cataracts.				

Heavy Metal Toxicity to Animal Health

Animal Specie	Toxic dose of Cadmium	Effect observed		
Cattle	Diet Containing 5 to 30 mg of Cd/Kg	Decrease in performance of cattle		
	Diet Containing ≥30 mg of Cd/Kg	Disorder of cattle's health		
Sheep	Diet Containing >40 mg of Cd/Kg	Animals presenting parakeratosis, reduction on appetite, body weight gain and testicle environment		
	Diet Containing 5 to 60 mg of Cd/Kg	Increased Zn concentration in liver and kidney		

National Research Council (NRC). Minerals In: National Research Council, editors. Nutrient requirements of dairy cattle. Washington: National Academy Press; **2001**. p.105-61.

Heavy Metal Poisoning

Animal	Cadmium Concentra	ation on	Cadmium concentration in tissue (mg/Kg)		
Specie	Diet (mg/Kg)		Liver	Kidney	
	0.1 to 0.2 Normal		0.02 to 0.05	0.03 to 0.10	
Cattle and sheep	0.5 to 5.0	High	0.1 to 1.5	1.0 to 5.0	
	>50 Toxic		50 to160	100 to 250	
	0.1 to 0.8 Normal		0.1 to 0.5	0.1 to 0.5	
Pig	1.0 to 5.0	High	1.0 to 5.0	2.0 to 5.0	
	>80	Toxic	>13	<270	

Reis, L.S.; Pardo, P.E.; Camargos, A.S. and Oba E., Mineral element and heavy metal poisoning in animals, Journal of Medicine and Medical Sciences, **2010**, 1(12), 560-79.

Heavy Metal Contamination in Feed

Mineral nutrient additive

Fishmeal
 Mercury contamination

Crops
 Source: Irrigation water, soil

OTSC GOALS

- 2011-2012 FSIS FERN Cooperative Agreement
- High priority project (Chemistry):
- Arsenic, Selenium, Cadmium, Thallium, Lead and if practical Mercury
- FDA Office of Regulatory Affairs and Forensic Chemistry Center, 2012
- Multi-elements quantitative analysis of trace elements (23 in total) in aqueous solutions by ICP-MS

Heavy Metal Analysis

Quantitative and Qualitative Analysis

- Atomic Absorption Spectrometry(AAS)
 - Flame, Graphite furnace
- Inductively Coupled Plasma(ICP)
 - > Optical Emission Spectrometry, Mass Spectrometry
- Other methods
- X-ray Fluorescence Spectrometry
- Instrumental Neutron Activation Analysis
- Prompt Gamma-ray Activation Analysis
- Microwave Plasma-Atomic Emission Spectrometry

Official Methods

Analyte	CEN Published Standard	AOAC Official Method	ISO Method
As	EN15510:2007*	986.15**	ISO 17239:2004
Cd	EN15550:2007*	986.15**	ISO 6561:2005
Cr	EN14082:2003	974.27	NA
Hg	EN13806:2002	977.15, 990.04	ISO 6637:1984
Pb	EN15550:2007*	-986.15**	ISO/TS 6733:2006
Se	EN14627:2005	986.15**	NA
ті	NA	NA	NA

CEN: European Committee for Standardization or Comité Européen de Normalisation.

AOAC: Association of Analytical Communities.

ISO: International Organization for Standardization.

*: in animal feeding stuff; **: in pet food.

Maximum Tolerable Levels

Analyte	Maximum Tolerable Level in Complete Feed (ppm) a	Maximum Level in food supplements (ppm) b	LOQ by ICP-OES in mineral additive and fishmeal (ppm) OTSC
As	30	NA	10
Cd	10		1
Cr	100	NA	20
Hg	0.2	0.1	NA
Pb	10	3	10
Se	3	NA	40
ті	1	NA	NA

a: info was provided by Dr. Lynn Post

b: EU regulation No 1881/2006

Comparison of Detection Limits

Analyte	ICP-MS	ICP-OES	Flame AAS	GF-AAS	High		
As	0.05	5	500	1	Î	ICP-OES	
Cd	0.01	0.5	5	0.03		MP-AES	ICP-MS
Cr	0.1	1	10	0.5	Number of Elements	Fast Sequential	
Hg	0.01	1	300	0.6	per Sample	AAS*	
Pb	0.005	5	20	0.5		Flame AAS	Graphite Furnace AAS
Se	0.1	5	1000	1	↓ Low		Hydride AAS
TI	0.01	5	40	1.5	High	(ppm) - Detec Lim	ation its ──→ Low (ppt)

Unit: ug/L or ppb in solution

Agilent website-Atomic Spectroscopy

ICP-MS Instrumentation

- ICP-MS in house: NexION 300
- Highlight:
- Three modes of operation (Standard, Collision and Reaction)
- > High sensitivity
- > High throughput
- Minimal user maintenance

Sample Preparation

Method Development-Standard Mode

	NexION Instrument Control Session - [Quantitative Analysis Method - C:\NexIONData\Method\wei\Seven metals-STD.mth] [G] File Edit Analysis Onlines Automation Window Help												
Me	Image: Current Sample Dataset Realtime Interactive CalibView RptOption RptView SmartTune Conditions MassCal DRC MD Instrument Devices Scheduler Chromera												
œ	Timing Processing Equation Calibration Sampling Devices QC												
	Sweeps / Reading Est. Reading Time MassCal File 8 0:00:20.841 default.tun Browse Readings / Replicate Est. Replicate Time Conditions File 1 0:00:20.841 default.dac Browse Replicates Est. Sample Time Est. Sample Time												
×	3	Int	0:01:0 Analyte	Mass	Scan Mode	MCA	Dwell Time	Integration	Corrections	Mode	Cell Gas	RP	RP
G	1	Stu	U U	(anu) 6.0151	Peak Hopping	1	100	800		Standard	0	0	0.25
ę	2		Sc	44.9559	Peak Hopping	1	100	800		Standard	0	0	0.25
	3		Cr	51.9405	Peak Hopping	1	100	800		Standard	0	0	0.25
	4		Cr	52.9407	Peak Hopping	1	100	800	1	Standard	0	0	0.25
	5		As	74.9216	Peak Hopping	1	100	800	As, Se, Se	Standard	0	0	0.25
	6		Se	76.9199	Peak Hopping	1	100	800		Standard	0	0	0.25
	7		Se	81.9167	Peak Hopping	1	100	800	Se, Kr	Standard	0	0	0.25
2	8		Y	88.9054	Peak Hopping	1	100	800		Standard	0	0	0.25
	9		Rh	102.905	Peak Hopping	1	100	800		Standard	0	0	0.25
	10		Cd	105.907	Peak Hopping	1	100	800	Pd	Standard	0	0	0.25
	11		Cd	107.904	Peak Hopping	1	100	800	Pd	Standard	0	0	0.25
	12		Cd	110.904	Peak Hopping	1	100	800	Cd, Pd, Pd	Standard	0	0	0.25
	13		Cd	113.904	Peak Hopping	1	100	800	Cd, Sn	Standard	0	0	0.25
	14		In	114.904	Peak Hopping	1	100	800	Sn	Standard	0	0	0.25
	15		ть	158.925	Peak Hopping	1	100	800		Standard	0	0	0.25
	16		Но	164.93	Peak Hopping	1	100	800		Standard	0	0	0.25
	17		Hg	201.971	Peak Hopping	1	100	800		Standard	0	0	0.25
	18		TI	202.972	Peak Hopping	1	100	800	1	Standard	0	0	0.25
	19		TI	204.975	Peak Hopping	1	100	800		Standard	0	0	0.25
	20		Pb	205.975	Peak Hopping	1	100	800		Standard	0	0	0.25
	21		Pb	206.976	Peak Hopping	1	100	800		Standard	0	0	0.25
	22		Pb	207.977	Peak Hopping	1	100	800	Pb, Pb, Pb	Standard	0	0	0.25
	23		Bi	208.98	Peak Hopping	1	100	800		Standard	0	0	0.25

Selection of Internal Standards

Recovery study of Standard addition (10 ppm) into 12 samples with **Standard Mode**.

Method Development-Collision Mode

-	& NexION Instrument Control Session - [Quantitative Analysis Method - C: WexIONDataWethod/wei\Seven metals-KED.mth]											
Cu	🕼 File Edit Analysis Options Automation Window Help											
ŧ												
ŧ.	Methad Sanda Datast Ballion Istanting Californian Battery Searching Cardinan MassCol DBCMD, Jackwash Davies, Schedular Chargers											
Me												
	Iming Processing Equation Calibration Sampling Devices QC											
	Sweeps / Reading Est. Reading Time MassCal File											
n	8	0:00:2	21.632	default.tun		Brows	e					
	Read	lings / Replicate Est, Re	eplicate Time	Conditions File								
	1	0:00:2	21,632	default.dac		Brows	e					
	Repli	icates Est. Sa	ample Time									
8	3	0:02:0)4.896	🗹 Enable QC C	hecking							
*		Int Appluto	Marca	Coop Modo	MCA	Duroll Time	Integration	The second second	Mada		00	DD.
		Std (*)	(amu)	(*)	Channels	per AMU (ms)	Time (ms)	Corrections	(*)	A	a	q
0	1	Li	6.0151	Peak Hopping	1	100	800		KED	4.5	0	0.25
R	2	Sc	44.9559	Peak Hopping	1	100	800		KED	4.5	0	0.25
	З	Cr	51.9405	Peak Hopping	1	100	800		KED	4.5	0	0.25
	4	Cr	52.9407	Peak Hopping	1	100	800		KED	4.5	0	0.25
	5	As	74.9216	Peak Hopping	1	100	800	As, Se, Se	KED	4.5	0	0.25
	6	Se	76.9199	Peak Hopping	1	100	800		KED	4.5	0	0.25
-	7	Se	81.9167	Peak Hopping	1	100	800	Se, Kr	KED	4.5	0	0.25
	8	Y	88.9054	Peak Hopping	1	100	800		KED	4.5	0	0.25
	9	Rh	102.905	Peak Hopping	1	100	800		KED	4.5	0	0.25
	10	Cd	105.907	Peak Hopping	1	100	800	Pd	KED	4.5	0	0.25
	11	Cd	107.904	Peak Hopping	1	100	800	Pd	KED	4.5	0	0.25
	12	Cd	110.904	Peak Hopping	1	100	800	Cd, Pd, Pd	KED	4.5	0	0.25
	13	Cd	113.904	Peak Hopping	1	100	800	Cd, Sn	KED	4.5	0	0.25
	14	In	114.904	Peak Hopping	1	100	800	Sn	KED	4.5	0	0.25
	15	Tb	158.925	Peak Hopping	1	100	800		KED	4.5	0	0.25
	16	Но	164.93	Peak Hopping	1	100	800		KED	4.5	0	0.25
	17	Hg	201.971	Peak Hopping	1	100	800		KED	4.5	0	0.25
	18	TI	202.972	Peak Hopping	1	100	800		KED	4.5	0	0.25
	19	TI	204.975	Peak Hopping	1	100	800		KED	4.5	0	0.25
	20	Pb	205.975	Peak Hopping	1	100	800		KED	4.5	0	0.25
	21	Pb	206.976	Peak Hopping	1	100	800		KED	4.5	0	0.25
	22	Pb	207.977	Peak Hopping	1	100	800	Pb, Pb, Pb	KED	4.5	0	0.25
	23	Bi	208.98	Peak Hopping	1	100	800		KED	4.5	0	0.25

Selection of Internal Standards

Recovery study of Standard addition (10 ppm) into 12 samples with Collision Mode.

Method Development

	🎄 NexION Instrument Control Session - [Quantitative Analysis Method - C:\NexIONData\Method\wei\method 6020a-ked.mth]												
Cu F	🚾 File Edit Analysis Options Automation Window Help												
Me	Image: Current Sample Image: Current Sa												
	Iming Processing Equation Calibration Sampling Devices QC												
	Image: Sweeps / Reading Est, Reading Time MassCal File Image: Sweeps / Reading D:00:14.144 Image: Browse Image: Sweeps / Reading Est, Reading Time MassCal File Image: Sweeps / Reading Est, Reading Time MassCal File Image: Sweeps / Reading Est, Replicate Time Conditions File Image: Sweeps / Reading D:00:14.144 Image: General Conditions File												
	Repli	cates	5	Est. Sample	. Time								
0	3		1	0:01:42.43	2 🛛 🗹 Ena	able QC Check	ing						
* . •		Int Std	Analyte (*)	Mass (amu)	Scan Mode (*)	MCA Channels	Dwell Time per AMU (ms)	Integration Time (ms)	Corrections	Mode (*)	Cell Gas A	RP	RP q
	1	Г	Cr	51.9405	Peak Hopping	1	100	800		KED	4.5	0	0.25
8	2		As	74.9216	Peak Hopping	1	100	800	As, Se, Se	KED	4.5	0	0.25
	3		Se	81.9167	Peak Hopping	1	100	800	Se, Kr	KED	4.5	0	0.25
[4	4	Rh	102.905	Peak Hopping	1	100	800		KED	4.5	0	0.25
	5	Г	Cd	110.904	Peak Hopping	1	100	800	Cd, Pd, Pd	KED	4.5	0	0.25
	6	4	In	114.904	Peak Hopping	1	100	800	Sn	KED	4.5	0	0.25
	7	Γ.	Hg	201.971	Peak Hopping	1	100	800		KED	4.5	0	0.25
	8		TI	204.975	Peak Hopping	1	100	800		KED	4.5	0	0.25
	9		Pb	207.977	Peak Hopping	1	100	800	Pb, Pb, Pb	KED	4.5	0	0.25
	10	h-	Bi	208.98	Peak Hopping	1	100	800		KED	4.5	0	0.25

Calibration Curves

Analyte	Mass	Correlation Coefficient	Calibration Range (ppb)
Cr	51.941	0.999929	1~100
As	74.922	0.999974	1~100
Se	81.917	0.999953	5~100
Cd	110.904	0.999990	1~100
TI	204.975	0.999999	1~100
Pb	207.977	0.999991	1~100
Hg	201.971	0.999911	0.05~1

Limit of Quantitation (LOQ)

Analyte	Maximum Tolerable Levels in Complete Feed (ppm)	LOQ by ICP-OES (ppm)	LOQ by ICP-MS in mineral (ppm)	LOQ by ICP-MS in fishmeal (ppm)
Chromium (Cr)	100	20	0.35	1.80
Arsenic (As)	30	10	0.55	0.35
Selenium (Se)	3	40	2.50	2.50
Cadmium (Cd)	10		0.35	0.45
Thallium (Tl)	1	NA	0.03	0.12
Lead (Pb)	10	10	0.02	0.20
Mercury (Hg)	0.2	NA	0.02	0.02

Recovery Study in Mineral Matrix

Recovery Study in Fishmeal Matrix

Results of SRM 695b

Analyte	Expected Value (µg g ⁻¹)	ICP-MS measurement (µg g ⁻¹)	RSD (%) of ICP-MS measurements (N=9)
Cr	244 ± 6	237	11
As	200 ± 5	201	6
Se	2.1 ± 0.1	4.8	25
Cd	16.9 ± 0.2	16.5	3
TI	N/A	0.6	7
Pb	273 ± 17	269	4
Hg	1.96 ± 0.036	1.73	4

Conclusion

- An ICP-MS method was developed and validated for quantitation of seven metals in feed sample.
 The new ICP-MS method has much lower LOQs than the ICP-OES method.
- The ICP-MS method can be applied for testing mineral and fishmeal matrices.

Acknowledgement

- Dr. Tim Herrman
- Ben Jones
- Dr. Susie Dai
- > Dr. Jim Balthrop
- Dr. Lynn Post

- Sara Williams
- James Embry
- Elemental Analysis
 Group

Office of the Texas State Chemist

OFFICE OF THE TEXAS STATE CHEMIST 445 Agronomy Road • College Station, TX 77840

(979) 845 1121 http://otsc.tamu.edu

Questions

